Bellingham, Washington

Radial Immunodiffusion Test Overnight/Endpoint Quantitation Canine IgM

ATTENTION

Plate must be stored upside down. Avoid near freezing **For** temperatures. Accuracy can **Of** assured with proper storage.

1. Summary

Single radial immunodiffusion tests have evolved from the work of Fahey and McKelvey¹ and Mancini et al². They are specific for the various proteins in serum or other fluids and depend on the reaction of each protein with its specific antibody.

When the wells in antibody containing gels are completely filled with the antigen, the precipitin rings which develop after 10-18 hours at room temperature are measured. The diameter of the ring and the logarithm (base 10) of the protein concentration are related in a linear fashion. Using appropriate reference standards, the concentration of unknown samples may be measured.

2. Principle

Radial immunodiffusion is based on the diffusion of antigen from a circular well radial into a homogeneous gel containing specific antiserum for each particular antigen. A circle on precipitated antigen and antibody forms, and continues to grow until equilibrium is reached. The diameters of the rings are a function of antigen concentration. After overnight incubation, the zone diameters of reference sera are plotted against the logarithm (base 10) of the antigen concentration.

3. Reagents

- A. Radial immunodiffusion plates contain specific antiserum in agarose gel, 0.1M phosphate buffer pH 7.0, 0.1% sodium azide as bacteriostatic agent, Plates also contain 0.002M ethylenediaminetetraacetic acid. Store at refrigerator temperatures (2 to 8 C).
- B. Canine Reference sera (Pooled canine serum at three levels). Contains sodium azide (0.1%) as bacteriostatic agent. Store at refrigerator temperature.

4. Specimen Preparation And Handling

- A. Collect whole blood without anticoagulent and allow to clot at room temperature.
- B. Separate serum by centrifugation at about 200 rcf within 2-3 hours after collection.
- C. Plasma may be used, but non-specific precipitation of fibrin may obscure precipitation rings. In addition, liquid anticoagulents such as ACD fluid will dilute the specimen.
- D. CAUTION: The unknown specimens should be treated as infectious.

5. Procedure

- A. Materials Provided
- 1. One Radial Immunodiffusion plate.
- 2. Reference Sera: 3x0.25 mls.
- 3. Directions for use.
- B. Materials Required
- 1. Blood collection tubes
- 2. Centrifuge (200rcf)
- 3. Microliter dispenser (3 microliters)
- 4. Reference sera (required if not provided in kit form)
- 5. Normal control sera (optional) available separately
- 6. Measuring device calibrated in 0.1mm increments
- Two cycle semi-logarithmic graph paper and/or linear graph paper.

C. General

- 1. Do not overfill or underfill wells. An improperly filled well yields erroneous results and the same specimen should be placed in another well. Overfilling with a **3 microliter** sample indicates that some gel shrinkage has occurred.
- 2. Reference serum zone diameters should be measured at the same time as test sera. If a delay in measurement is anticipated allow sufficient intervals between filling wells.
- 3. The time of filling each plate should be marked on the cover and if more than one plate is filled, they should be read in order of filling.
- 4. Excess moisture is required to prevent drying. Replace each plate in its foil bag and reseal carefully before incubation.
- 5. Shrinkage of gel or oval shaped wells indicate drying and the plate should not be used.
- 6. If temperature fluctuations are anticipated, the plates in their bags may be incubated in an insulated container. Fluctuations in temperature may result in multiple precipitin ring formation.
- 7. Unused sections may be run at a later day if the plate has been stored at 2 to 8 C between incubations in its plastic bag. Check carefully for evidence of drying.
- 8. Rough granulation of the gel indicates freezing, plates should be discarded.

D. Performance Of Test

- Remove plates from refrigerator to room temperature approximately 30 minutes before filling wells. Do not open bag until ready for use.
- If excess moisture is present, remove plate from bag and remove cover until evaporation has dried the surface and wells. Replace cover until used.
- 3. For best results, three wells should be filled with reference sera for each plate. Location of each should be noted. Mix each vial of reference serum thoroughly.
- 4. Deliver specimen to well by placing the pipette tip at the bottom of the well. Allow the well to fill to the top of the agar surface. Avoid bubbles to ensure proper volume and diffusion of sample. Visualization may be aided by placing the plate on dark background. If practice is required, a used plate may be utilized.
- 5. More consistent results may be obtained when wells are fill with a 3 microliter pipette.
 - 6. Mark time of completion on plate cover and replace cover.
 - 7. Replace plate in bag and reseal carefully.
- 8. Incubate plates upright on a flat surface at room temperature (20 24 C) for 14-18 hours for Overnight readings and over 48 hours for End Point readings.

E. Calibration

- Using the reference sera provided in kits determine their ring diameters to the nearest 0.1mm.
- 2. Using 2 or 3 cycle semi-logarithmic graph paper, plot the concentration on the Y-axis and the zone diameters on the linear or X-axis for each protein for Overnight readings.
- 3. Using regular graph paper, plot the concentration on the X-axis and the zone diameters squared on the Y-axis for each protein for End Point readings.
- 4. Draw a straight line of "best fit" between the three points. A curved line usually indicates that the incubation time and/or temperature should be reduced for overnight values. For valid results, a smooth curve should be fitted to the points and control sera included for additional verification.

F. Quality Control

For consistent results and a comparison of lot to lot, day to day, and week to week variations, a "normal" and abnormal serum should be included each day. The diameters and concentrations obtained can be charted to determine means and standard deviations. For the same specimen, an appropriate series of wells on the same plate should yield diameters within 0.2mm of one another. Control sera should be freshly thawed or reconstituted.

G. Reference Sera

All reference sera supplied have been calibrated from two Standard sera. The Standard Sera were calibrated against the appropriate purified proteins.

6. Results

Determine the concentration of each unknown of specimen protein by reading its zone diameter on the reference curve and the corresponding concentration from the X axis.

7. Interpretation Of Results And Limitation Of The Procedure

- A. When an unknown diameter exceeds that of the top standard, the specimen should be diluted with saline and rerun.
- B. When an unknown diameter is smaller than that of the lowest standard, its concentration should be reported as "less than" the concentration of the reference serum. If available, "low level" radial immunodiffusion plates may be utilized.
 - C. Lack of a precipitin ring may be due to:
 - 1. sample not applied to well
 - 2. a concentration too low to be detected by the method
- 3. a concentration too high, resulting in the formation of soluble complexes, which are not precipited
- D. <u>These plates do not measure substitute colostrum</u> sources of IgM from Goat, Sheep, or Cow.

9. Performance Characteristics

A. The performance characteristics of this product have not been established.

10. References

- 1. Fahey, J.L. and McKelvey, E.M. Quantitative determination of serum immunoglobulins in antibody agar plates. J. Immunol. 94,84, 1965.
- 2. Mancini, G., Carbonara, A.O. and Heremans, J.F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235, 1965.
- 3. Stokes C, Bourne JF. Mucosal immunity. In: Halliwell REW, Gorman NT, eds. Veterinary clinical immunology. Philadelphia: WB Saunders Co, 1989.
- Shifrine M, Smith JB, Bulgin MS, et al. Response of canine fetuses and neonates to antigenic stimulation. J Immunol 1971;107:965-970
- 5. Gerber JD, Brown AL. Effect of development and aging on the response of canine lymphocytes to phytohemagglutinin. Infect Immun 1974; 10:695-699.
- 6. Jeffcott, L.B.: Studies on passive immunity in the foal. J. Comp. Pathol., 84:93, 1974.
- 7. Jeffcott, L.B.: Passive immunity and its transfer with special reference to the horse. Biol. Rev., 47:439, 1972.
- 8. Perryman, L.E.: Immunological management of young foals. Comp. Cont. Educ. Pract. VEt. 3:S223, 1981.
- 9. Jeffcott, L.B.: Some practical aspects of the transfer of passive immunity to newborn foals. Equine Vet. J., 6:109,1974.

- Jacoby RO, Dennis RA, Griesemer RA. Development of immunity in fetal dogs: humoral responses. Am J Vet Res 1969;30:1503-1509.
- 11. Gillette DD, Filkins M. Factors affecting antibody transfer in the newborn puppy. Am J Physiol 1966; 210:419-422.
- 12. Brambell FWR. Transmission of passive immunity in the cat and dog. In: Brambell FWR, ed. The transmission of passive immunity from mother to young. New York: American Elsevier Publishing Co, 1970
- 13. Fisher EW. Neonatal diseases of dogs and cats. Br Vet J 1982; 138:277-284.
- 14. Greene CE. Immunoprophylaxis and immunotherapy. In: Greene CE, ed. Clinical microbiology and infectious diseases of the dog and cat. Philadelphia: WB Saunders Co, 1984.

TRIPLE J FARMS

777 JORGENSEN PLACE
BELLINGHAM, WASHINGTON 98226 USA
Telephone 360-398-9512 Fax 360-398-1756

Email: <u>info@kentlabs.com</u>
Website: www.kentlabs.com